SIF Reduction

(Significant Injury or Fatality) Remove Employees from Line of Fire Roughing Mill - Saukville

Tom Seyfert – Operations Technical Manager Daniel Cook – Mechanical Engineer

Keyence Measuring System

Line of Fire Definition

- Line of Fire is the path an object will travel and create a risk of injury. 'You are in the line of fire when you are at risk of coming into contact with a force that will, or may hurt you What is a 'Line of Fire' hazard?
- Keep Employees & Visitors out of the designated area

Roughing Mills

Cobbles

Cobbles

• Definition:

An incident when bar that is being hot rolled either jams in the mill guides, resulting in delays to reset the guides and rolls, or comes out of its normal rolling trajectory, frequently landing (often at high speed) in the area adjacent to the rolling mill stands

Remove Employee From Line of Fire

So how did we accomplish this?

Company Confidential

Formed a Team

Brainstormed ideas?

Operators Station Anything wrong with this or needs improvement?

HARTER

crometer bench, phone

Operators Station

- Move computers & Process Equipment
- Move bench
- Removed old computer cabinet and scrapped
- Purchased 10' x 10' building where are we going to put it?
- Cut hole in wall & added steps Escape route

Operators Station

Move it here West side of mill behind motors

Move in day

Purchased 10' x 10' modular building, put it on the west side of the mill. Installed computer and process equipment

Cabinet on the move

Company Confidential

Construction mode

Construction done

Construction done

Company Confidential

Installed Guard Rails

Roll Change (Gates open)

East wall

East wall finished

Company Confidential

West Side of Mill

Installed Railings and Signage

Mill Cross Over after 10 Stand

Mill Cross Over after 10 Stand

Remember

Company Confidential

Removed Stairs

Company Confidential

Old Trough

New Swing Trough

Swing Trough

In review

- Purchased 10' x 10' building
- Moved computers & Process Equipment
- Removed old computer cabinet and scrapped
- Cut hole in wall & added steps
- Removed broken overhead door and added pedestrian access
- Installed railings /gates before 5 stand to keep people out
- Removed mill access by 10 stand Pinch Rolls
- Put operator work bench under pulpit

Where's Waldo?

Company Confidential

Keyence Section Measurement

Quick Video – Calipering

Quick Video - Sticking

What's wrong in the previous videos?

CAUTION HOT SURFACE DO NOT TOUCH

If its so wrong, then why do we do it?

- Calipering
 - Operator measures the height or width sections of the billet.
 - Correct size reduction leads to efficient rolling.
 - Performed at the beginning and ending of every shift (4 times a day)

Sticking

- Operator burns a profile into a stick and feels for vibrations.
- Sticking the mill catches surface defects.
- Performed once per hour (24 times a day)

How can we perform these checks safely?

Ideas?

Solution

- Keyence 2D/3D Laser Profiler
 - Away from line of fire and extreme temperatures
 - Reliable and repeatable
 - Measures at high speeds
 - Low-cost alternative to LAP gauge

KEYENCE

2D/3D Laser Profiler

LJ-X8000 Series

High-Resolution Inline Measurement 3200 points/profile

Away from line of fire and extreme temperatures

- Measures from a range of 22.83"-54.33" away from the steel.
- Installed on the West side of the mill stands.
- Remote monitoring capabilities
- Continuous monitoring

Reliable and repeatable

- Resolution
 - Z-axis (height): 0.015"
- Repeatability
 - Z-axis (height): 0.0004"
 - X-axis (width): 0.0010"
- Profile data interval
 X-axis (width): 0.0089"

HARTER

Measures at high speeds

- Sensor head collects 3200 points per second.
- In 3D mode the controller has a sampling cycle maximum speed of 16µs.
- Can accurately measure up to 709 ft/min.
 - Can increase speed by sacrificing resolution in direction of travel, width, or height.

Components

Additional Components

Company Confidential

How it works

2D to 3D

Measure Section Height

Operator visual

Current Image Display

Company Confidential

Multi-view

Company Confidential

 Size measurements are recorded into daily checklists.

Size Parameters

 Size parameters are determined by Level III Procedures.

<image>

A Guide to Steel Inspections and Common Risks

Data Saving Capabilities

- Controller saves both grayscale and height images.
- Can save to flash drive, SD card, PLC, or network.
- Images can be reviewed through a Keyence simulation software.

Future Possibilities

- Surface Defect Detection
- Split Nose Detection
- Automatic Size Adjustment
- Bar Code & QR Code Scanning

Surface Defect Detection

- Sensors can measure difference is surface height.
- Cracked Roll
- Seams
- Overfill
- Scabs & Slivers

IARTEI

Split Nose Detection

Automatic Size Adjustment

- Continuously monitor size after each mill stand.
- Adjust roll pass overtime to account for wear.
- Reduces risk of overfill.

IARTER

Bar Code & QR Code Scanning

- Can measure multiple billets at a time.
- Data can be communicated through PLC to ensure correct billets are sent to reheat furnace.
- Can also measure the quality of front-end torch cut.

56

One Family. One Team. chartersteel.com