Standard and Special

Steel of West Virginia, Inc.

Design: More like a Map than a Recipe.

3 Stages
 of
 Design

DEFINE

Establish overall concept and requirements, challenges, constraints, answering specific questions.

- Tolerances

- Reduction Ratio, \# of passes, Avg. Reduction \%
- Mill limits,
- Elongations, limits on Mill, Thru put, Cost/Profit
- Special equipment needs
- Ect.

Each step clarifies Vision

EXPLORE

Playing with the possibilities that fit inside the defined envelope. Take basic design concepts and build structure or composition.

- Quick sketches
- Imagining different possibilities (Diagonal, T\&G, Universal, Slab, Edger, Combo)
- Start small and quick, move to full size
- Start with KNOWN
and
Move toward UNKNOWN

REFINE

Refining our design to make it balanced and sing.

- Trail and error, adjusting angles, radii, balancing parts of a pass, tracking
- Each Design has a "Money Pass" i.e. A stupid pass if it makes it through here we'll be fine. Earlier the better!
- Lots of back and forth between Explore and Refine Phases.

\#85 Crane Rail

85\# pass design overview

\#85 No. 7 pass (finish)

Avg. reduction: 8.01\%

H-8.77\%
F-8.93\%

Hot size

- Set @ 3 degrees
\diamond Flanges rotated 0.5 degrees to ensure flatness
\diamond Head worked as edger
\diamond Flanges worked as diagonal

\#85 No. 6 pass (leader)

Avg. reduction: 11.90\%

F-13.66\%
\diamond Set at 10 degrees
\diamond Dead legs at 3 \& 4 degrees
\diamond Head radii at 36" prep. for finish edger
\diamond Flange dead leg rotates into position, protects against vacancy on backside of base

H-12.11\%
w-8.12\%
calculated 14.70\%

\#85 No. 5 pass (former)

Avg. reduction: 13.59\%

\diamond Set at -10 degrees
\diamond Dead legs at 7.5 \& 4 degrees

- Web radii started here, avg. web thickness used for calculation
\diamond Flange dead leg rotates into position, protects against vacancy on backside of base
\diamond Flange live leg rotates into position, counteracts dead leg force as well as reduce direct wear on live leg
\#85 No. 4 pass

Avg. reduction: 18.16\%

F-19.68\%

H-19.31\%
calculated 19.90\%
\diamond Set at16.5 degrees
\diamond Dead legs at 6.5 degrees
\diamond Flange rotated in position, maintains flange individuality and increased direct rolling contact for live legs

\#85 No. 3 pass

\#85 No. 2 pass

Avg. reduction: 23.99\%

F-26.10\%

H-20.19\%
W-28.54\%
W-28.54\%
\diamond Set at 25 degrees
\diamond Entry bar similar profile, primarily reducing thickness
\diamond Flanges seat before web
\#85 No. 1 pass
Avg. reduction: 22.14\%
\diamond Set at -15 degrees
\diamond Reducing head, while growing flanges

H-23.30\%
F-23.59\%

W-14.28\% calculated 36.48\%

\#85 BD3

Avg. reduction: 23.28\%
F-22.55\%

H-18.67\%
\diamond Set at 20 degrees
\diamond Knifing web
\diamond High web work, short dead legs on head side, squeezing action on flanges maintain flange length, while reducing head

W-36.00\%
calculated 55.9\%

\#85 BD1-3

Avg. reduction: 15.57\%

H-12.48\% F-15.91\%
\diamond Set at -15 degrees
\diamond Flanges begin basic division
\diamond Reduction of thickness web and overall width

W-21.36\%

\#85 BD1-2

Avg. reduction: 12.52\%

F-9.79\%

H-19.03\%
W-2.80\%
\diamond Set at 15 degrees
\diamond Flanges floating maintain work via outside
\diamond Dead leg on head reducing height, minimal spread in opposing live leg due to mass in between

\#85 BD1-1

\diamond Set at - 15 degrees
\diamond Bite angle 22.2 degrees
\diamond Dividing head from flanges, piercing web
\diamond Web hits bar at same time as adjacent side wall

\#140 Hook Flange Rail

\#140 Hook Flange pass design overview

\#140 Hook Flange No. 8 pass (u-mill)

Avg. reduction: 8.01\%

H-7.75\%

F-7.82\%
w-5.16\%
calculated 7.1-2.8\%

Hot size

- Set @-7 degrees
\diamond Hook flange rotated 3 degrees
\diamond Head worked with edger joint but treated as diagonal
\diamond Flanges worked as diagonal, some folding action

\#140 Hook Flange No. 7 pass (pre-finish)

Avg. reduction: 10.65\%

H-11.76\%

F-11.32\%
w-8.70\%
calculated 9.86\%

- Set @ -9 degrees
\diamond Hook flange rotated 7 degrees
\diamond Back to back live joints, head worked as diagonal with stop
\diamond Flanges worked as diagonal, greater folding action, $\operatorname{dog} \operatorname{leg}$ introduced
\diamond Finish pass had to move to u-mill different roll set8 and 7 passes set at negative

\#140 Hook Flange No. 8 \& 7 must be in different roll sets

Correct bearing collars
Counteracting axial separating forces

Incorrect bearing collars
Bearing collars only work for some passes
But 5 \& 7 passes will never BOTH work

\#140 Hook Flange No. 6 pass (leader)

Avg. reduction: 13.37\%

- Set @ 14 degrees

↔ Hook flange rotated 7 degrees
Δ Last pass to control hook leg length
F-15.27\%

H-14.91\%

$$
\begin{aligned}
& \text { w-9.26\% } \\
& \text { calculated } 13.41 \%
\end{aligned}
$$

\#140 Hook Flange No. 5 pass (former)

Avg reduction-14.01\%

H-14.35\%

| w-12.93\% |
| :--- | :--- |
| calculated 14.17% |$\quad \mathrm{~F}-14.56 \%$

\diamond Set @ -13 degrees
\diamond Web tapered radius introduced
\diamond Angles are sufficient to start and form the bar

\#140 Hook Flange No. 4 pass

Avg reduction-14.34\%

- Set @ 15 degrees
\diamond Pitch adjusted to increase top roll diameter at dead leg

F-15.43\%

H-15.95\%

$$
\begin{aligned}
& \mathrm{w}-10.89 \% \\
& \text { calculated 14.24\% }
\end{aligned}
$$

\#140 Hook Flange No. 3 pass

Avg reduction-15.91\%

H-18.58\%
\diamond Set @ - 15 degrees
\diamond Pitch adjusted to increase bott. roll diameter at dead leg
\diamond flange live leg opening up and thinning
\diamond Over/under passes (1\&2) are interdependent with this pass.
\#140 HF Rougher roll

\#140 Hook Flange No. 2 pass

- Set @ 15 degrees
- 1 pass enters @ Approx.

13 degrees, i.e. self centers with tracking distances; and aids opening of dead leg flange, while retarding growth of live leg head

- Heads dead leg matches 1 pass dead which must fit No. 2 passes live leg, similar relationship with all other parts between 1,2 3 passes.
w-2.36\%

F-14.70\%

H-14.81\%

$$
\text { calculated } 14.26 \%
$$

\#140 Hook Flange No. 1 pass

Set @ - 15 degrees

Avg reduction-15.72\%

H-14.22\%
\diamond Primarily thinning flanges, prepping for No. 2 and 3 passes
\diamond Flanges track before web contacts

F-17.58\%
w-14.62\%

\#140 Hook Flange BD1-3 pass

Avg reduction-17.14\%
F-10.10\%

H-17.05\% w-28.14\%
\diamond Set @ 10 degrees
\diamond Primarily thinning web, flanges are maintained
\diamond Flange live leg is bent out with tongue of roll
\diamond Flanges and web track nearly at same time

\#140 Hook Flange BD1-2 pass

Avg reduction-23.24\%

H-20.67\%

F-12.79\%
\diamond Set @ -10 degrees
\diamond Primarily creating web, and reducing head height, while flanges are maintained
\diamond Crazy work is done early to upset ratios, while steel is most plastic and hot

\#140 Hook Flange BD1-1 pass

Avg reduction-19.34\%

- Set @ 10 degrees
\diamond Enters w/ 9x9 Billet
\diamond Primarily piercing billet, creating head and flange sides
\diamond Some extra work on dead leg of head, reducing head height and large radius to retard future growth
\diamond Diagonals side walls help aid in bite angle.

Thank You

Any Questions or Comments?

