

Intensive Recrystallization-Controlled Rolling of High-Temperature-Processing Linepipe Steel with Low Nb Content

Prof. C. Isaac Garcia Ferrous Physical Metallurgy Group

EXAMPLES OF AREAS OF RESEARCH INTEREST TO THE FERROUS PHYSICAL METALLURGY GROUP

GOAL: To develop a robust processing route to the production of High-Strength Low-Alloy (HSLA) steel for linepipe applications.

1.Intensive Recrystallization-Controlled Rolling + Accelerated Cooling.

Optimize microstructure for properties.

Improve cost and productivity.

Hypothesis:

The precipitation and grain refinement required for the strength and toughness of a linepipe steel can be achieved by a novel hot deformation approach. This approach consists of increasing deformation at recrystallization conditions and using lower amounts of micro-alloying additions.

General Objective

Overall Experimental Approach

Chemistries and Critical Temperatures

Wt%	Low Nb	Med Nb	High Nb
С	0.050	0.049	0.049
Mn	1.495	1.518	1.508
Р	0.012	0.011	0.011
S	0.0044	0.0040	0.0045
Si	0.261	0.262	0.249
Cu	0.096	0.098	0.097
Ni	0.257	0.255	0.255
Cr	0.253	0.253	0.252
Мо	0.151	0.151	0.151
V	0.061	0.064	0.064
Ti	0.010	0.010	0.010
Al	0.032	0.034	0.035
Ν	0.0072	0.0065	0.0068
Nb	0.051	0.070	0.091
В	0.00	0.00	0.00
Са	0.0012	0.0013	0.0015

	A _{r3}	A _{r1}
High-Nb	848°C	688°C
Low-Nb	847°C	689°C

Dissolution Predictions

Austenite Grain Size Control with Low-Nb

Precipitation Dissolution Retarded by Particle Complexity

MN

202

Similar Dissolution Behavior for Both Nb Contents

High-Nb

■ 1250°C-L

1200°C-L

1150°C-L

1300°C-L

Reheating Summary

- PAGS:
 - Low-Nb steel maintains grain size control below 1200°C for 1h.
 - PAGS can be measured with EBSD reconstruction tools.
- Dissolution:
 - Experimental PPT volume fraction exceeded model predictions.
 - Remaining PPTs appear of complex composition and morphology. Ti-rich precipitates 100-300nm in size. Nb-rich PPTs 20-60nm in size.
 - Precipitates nature, morphology and size was verified by SEM, EDS, SADP and HRTEM.
 - There is an opportunity to model the kinetics of dissolution of complex particles

Experimental Approach - Results

Mean Flow Stress Matched Existing Models

Misaka, Y., and T. Yoshimoto (1967) Siciliano, *et al.* (1996)

, (

Experimental

$$MFS = e^{\left(0.126 - 1.75[C] + 0.594[C]^{2} + \frac{2851 + 2968[C] - 1120[C]^{2}}{T}\right)\varepsilon^{0.21}\dot{\varepsilon}^{0.13}}$$
$$MFS = (0.78 + 0.137[Mn]) * (MFS_{Misaka}) * (1 - X_{dyn}) + K\sigma_{ss}X_{dyn}$$
$$MFS = \frac{1}{\varepsilon_{1} - \varepsilon_{0}} \int_{\varepsilon_{0}}^{\varepsilon_{1}} \sigma \, d\varepsilon$$

Hot Compression Experiments

	Experiment al Tnr	Boratto 1988	Fletcher 2008	Bai 2011
Low Nb	~975°C	1100°C	935°C	1001°C
High Nb	~1025°C	1309°C	984°C	1043°C

 $T_{NR} = 887 + 464C + (6445Nb - 644\sqrt{Nb}) + (732V - 230\sqrt{V}) + 890Ti + 363Al - 357Si$ $T_{NR} = 203 - 310C - 149\sqrt{V} + 657\sqrt{Nb} + 683e^{-0.36\varepsilon}$ $T_{NR} = 174\log\left[Nb\left(C + \frac{12}{14}N\right)\right] + 1444$

What Controls Recrystallization Inhibition?

 $F_{PIN} = 4r\sigma N_{s}$

Precipitation prevents recrystallization

1234

E.J. Palmiere, et al (1996)

Complex particles persist

At%

6.4

14.6 66.42

0.13

0.5

0.72

0.02

0.02

0.04 2.02

0

0.08

9.06

C N

O Si

S Cl

Ti

V

Cr

Mn

Fe Ni

Cu

Nb

X. Ma, C. Miao, B. Langelier, S. Subramanian, Materials & Design 132 (2017) 244-249.

Experimental Approach - Results

IRCR Offers More Nucleation Area After Roughing

Effective Nucleation Area (Sv)

T. Kvackaj, I. Mamuzic(1998).

IRCR High Nb – After Transfer

	Spectru	left-side	TUII	
A state of the sta	m Label		particle	
	С	81.57	84.04	
	Si		0.13	
	Ti	1.29	6.31	
	V	0.19	0.29	
	Cr		0.1	
	Fe		0.06	
/	Cu	3.67	2.68	
	Nb	13.28	6.39	
		1		
<u>100 nm</u>	1			

University of Pittsburgh

Precipitate Size Distribution (20 000X)

Recrystallization vs Pinning Force

E.J. Palmiere, C.I. Garcia, A.J. DeArdo, Metallurgical and Materials Transactions A 27(4) (1996) 951-960.

Zapari	$E = A \pi \sigma N$	Flexible GB
zener.	$F_{PIN} = 470 N_S$	$3f_{n}^{2/3}$
F	$-\frac{12.5\Delta\sigma^2}{2}$	$N_s = \frac{y_v}{4\pi r^2}$
Γ_{RX}	$K_N =$	

	PPT Average Feret Diameter (nm)	Volume Fraction	F _{PIN} (MPa)	F _{RXN} (MPa)
High-Nb Roughing	10.94	0.00456	3.84	0.1075
High-Nb Transfer	11.50	0.01926	9.55	0.1075
Low-Nb Roughing	10.06	0.00491	4.39	0.1744
Low-Nb Transfer	10.21	0.01476	8.94	0.1744

Simulation of Finishing

IRCR

Summary: Hot Deformation

After Roughing:

- Precipitation is copious and $F_{PIN} > F_{RXN}$
- Average austenite grain size is similar for both process
- Effective nucleation area (Sv) is higher in IRCR

After Finishing:

- KAM is higher in IRCR process
- Austenite conditioning promised numerous nucleation sites.

Rolling Schedules

CCR			
Tin (°C)	% Reduction		
1200			
1050	35.7	T>Tnr	
925	24		
900	24	T <tnr Total Poduction</tnr 	
875	24	67%	
850	24		
550			

Tin (°C)	% Reduction	
1200		
1100	18	T>Tnr
1070	27	Total Reduction
1040	35	61%
910	26	T <tnr< td=""></tnr<>
880	26	45%
550		

IRCR

Accelerated Cooling of 16°C/s Was Used

Observations	Source
0.09 and 0.04 Nb, 0.06 C, 2 Mn Optimum performance: 820°C finish, 460°C coiling, 25°C/s cooling rate. API X100 achieved	L. Lan, et al (2017)
0.025 C, 0.04 Nb, 1.5 Mn, 0.32 Mo To obtain AF, 20°C/s down to 400°C, followed by 1hr at 500°C. API X70 achieved.	MC. Zhao, et al (2003)
AF forms at temperature slightly above Bainitic transformation. NbC PPTN hardening in AF has high potency at 600°C holding.	Y. Gu, et al (2016)
0.14 C, 0.02 Nb, 0.96 Mn, 0.32 Mo 3°C/s cooling rate enough to produce F-AF microstructure. Heterogeneous microstructure, undeformed austenitization.	L. Shi, et al (2014)
0.05 C, 0.1 Nb+V+Ti, 1.24 Mn 9-10°C/s form PF-AF microstructure after hot deformation in austenite. 10-12 and 14-17°C/s give more homogeneous structure, but USE and FATT similar to 9-10°C/s.	B. Hwang, et al (2005)

Length

4.64 mm

4.67 mm

53944

Higher UTS after IRCR

	YS (KSI)	UTS (KSI)	Elongation %
CCR High-Nb	78.73	93344	37.2%
CCR Low-Nb	75.25	89718	35.2%
IRCR High-Nb	70.54	95675	31.5%
IRCR Low-Nb	75.23	93336	31.4%

3

YS UTS

Splitting in CCR: Inhomogeneous microstructure

IRCR Low-Nb

34

University of

CVN: Low-Nb Tougher

3

IRCR: Finer, More Homogeneous Grain Size

Final Precipitation is Finer in IRCR

Thank You!

